
Learning to Compress Using Deep AutoEncoder
Qing Li and Yang Chen

Abstract—A novel deep learning framework for lossy compres-
sion is proposed. The framework is based on Deep AutoEncoder
(DAE) stacked of Restricted Boltzmann Machines (RBMs), which
form Deep Belief Networks (DBNs). The proposed DAE compres-
sion scheme is one variant of the known fixed-distortion scheme,
where the distortion is fixed and the compression rate is left to
optimize. The fixed distortion is achieved by the DBN Blahut-
Arimoto algorithm to approximate the N th-order rate distortion
approximating posterior. The trained DBNs are then unrolled to
create a DAE, which produces an encoder and a reproducer. The
unrolled DAE is fine-tuned with back-propagation through the
whole autoencoder to minimize reconstruction errors.

Index Terms—rate distortion, lossy source coding, Restricted
Boltzmann Machine, Deep Auto-Encoder, Deep Belief Network,
Blahut-Arimoto algorithm.

I. INTRODUCTION

In recent years, deep learning methods have demonstrated
great achievements in various areas, including machine trans-
lation and speech processing [9]. Additionally, deep learning
combined with channel coding techniques can improve decod-
ing performance (e.g., bit error rate) for error correcting codes
such as high density parity check codes [23].

Lossy source coding is a technique that represents a source
with fewer bits and less-than-perfect fidelity. The trade-
off between rate and distortion in representing a source is
termed rate-distortion function and was characterized by Shan-
non [27]. For uniformly distributed binary sources, modern
coding techniques such as polar codes and spatially coupled
low-density generator-matrix codes approach rate-distortion
function for infinitely large code length [14], [31]. For binary
sources with memory (e.g., stationary ergodic source), tech-
niques based on machine learning are proposed to construct
rate-distortion approaching lossy source codes [13], [32], [18],
[19]. For binary sources neither independent and identically
distributed nor stationary ergodic distributed (e.g., binarized
images), relatively few codes are available [22], [28]. In this
work, we focus on binary lossy source coding and demonstrate
that deep autoencoders can be used to construct lossy source
codes.

A. Rate Distortion and Lossy Compression

Let X = {0, 1}, N ∈ N+, x = (x0, x1, · · · , xN−1) ∈ XN
be a source codeword, and y = (y0, y1, · · · , yN−1) ∈ XN
be a reproduced codeword. For any (x, y) ∈ (X ,X), denote
the distortion of x and y as ϕ(x, y) ∈ R+. Let ϕ(x,y) =
1
N

∑N−1
i=0 ϕ(xi, yi) be the average distortion of x and y.

Qing Li is now with Western Digital Research, Milpitas, CA, 95035, USA
(e-mail: Qing.Li7@wdc.com). Yang Chen is now with the Department of
Statistics and Michigan Institute for Data Science, University of Michigan,
Ann Arbor, MI 48109, USA (e-mail: ychenang@umich.edu).

For source and encoded codeword sizes N,M ∈ N+ and
a distortion D ∈ R+, an (N,M,D)-rate distortion code
consists of: 1) an index set D = {0, 1, · · · ,M − 1} and a
codebook C ⊆ XN , 2) an encoding function fN : XN → D,
and 3) a reproducing function gN : D → C such that
D̄

def
= E(ϕ(x, gN (fN (x)))) ≤ D, and the expectation E(·) is

taken with respect to the probability distribution on x ∈ XN .
The rate distortion function is defined as R(D) =

lim
N→∞

RN (D), where RN (D) is the N th order rate distor-

tion function: RN (D)
def
= infPY|X(y|x)∈PN (D)

I(x,y)
N , where

PN (D)
def
= {PY|X :

∑
x,y

PX(x)PY|X(y|x)ϕ(x,y) ≤ D},

PX is a given source probability distribution, PY|X is the
conditional probability distribution, and I(x,y) is the mutual
information between x and y. For a fixed N , let µY|X be the
conditional distribution achieving the N th order rate distortion,
and let µY be the resulting marginal distribution.

B. Deep Learning Models

Deep learning models such as Restricted Boltzmann Ma-
chines (RBMs [7]) and Deep Belief Networks (DBNs [10]) are
universal approximators, that is, they are able to approximate
any binary sequence distribution. The representation power of
DBNs does not decrease by adding layers [15]. Thus RBMs
and DBNs can be used to learn µY|X and µY.

1) Restricted Boltzmann Machines: An RBM (see Fig. 1)
can be represented with parameters (W,b, c): a binary
stochastic unit visible layer, v = (v0, v1, · · · , vN−1) ∈ XN ,
is connected to a binary stochastic unit hidden layer, h =
(h0, h1, · · · , hK−1) ∈ XK ; the weights of the edges are
denoted by a matrix W = [wij]N×K ∈ RN×K , and v and h
are also attached to bias terms b = (b0, b1, · · · , bN−1) ∈ RN
and c = (c0, c1, · · · , cK−1) ∈ RK , respectively.

The joint distribution of v and h, PVH(v,h), is defined as
a Boltzmann distribution, PVH(v,h) = Z−1exp(−E(v,h)),
where the energy function E(v,h) is given by E(v,h) =
−
∑
i,j

wi,jhjvi −
∑
i

bivi −
∑
j

cjhj , and the partition function

Z is given by Z =
∑
h,v

exp(−E(v,h)). Integrating out the

hidden layer h gives the marginal distribution of the variables
v:

PV(v) =
1

Z

N−1∏
i=0

exp(bivi)

K−1∏
j=0

(1 + exp(cj +

N−1∑
i=0

wijvi)).

(1)
2) Deep Belief Network: DBNs (see Fig. 1) can be viewed

as a stack of RBMs, where each RBM’s hidden layer serves
as the visible layer for the next. A DBN with L (L ∈ N+)
layers models the joint distribution between observed vector

2019 57th Annual Allerton Conference on Communication, Control, and Computing
(Allerton)
Allerton Park and Retreat Center
Monticello, IL, USA, September 24-27, 2019

978-1-7281-3151-1/19/$31.00 ©2019 IEEE 930

2

C C C

W

0 1 2 −

ij

b0 b1 b2 b N − 1

v0 v1 v2 vN − 1

k − 1C

− 1khh0 h1 h

RBM

v

h

h

h

1

1

2

W1

W2

RBM

Decoder

W W

V

V

V

V

V

h

V

V

V

V

V

1

2

3

4

V5

6

1

2

3

4

5

V6

h1

h2

3

Encoder

Fig. 1: Deep Learning models. Left: Restricted Boltzmann Machines; Middle: Deep Belief Networks; Right: AutoEncoder.

v and L hidden layer h1 ∈ XK1 ,h2 ∈ XK2 , · · · ,hL ∈ XKL

for K1,K2, · · · ,Kl ∈ N+ as follows:

P (v,h1, · · · ,hL) = (

L−1∏
k=1

P (hk+1|hk))P (h0,hL), (2)

where v = h0, P (hk|hk+1) is a visible-given-hidden con-
ditional distribution in an RBM associated with level k of
the DBN, and P (h0,hL) is the joint distribution in the top-
level RBM. For convenience, we represent l layers DBN by
{(Wl,bl, cl), l = 1, 2, · · · , L}. DBNs are trained in a greedy
layer-wise fashion [10].

C. Related work

In 2006, Hinton et al. presented a dimension reduction
method in Science [11], which broke the stalemate that neural
network was in low tide for a long time. As we show later,
this method is essentially a lossless compression method from
the coding point of view. Another machine learning based
compression scheme was put forth by Jalali et al. [12], where
ideas such as Markov Chain Monte Carlo (MCMC) and
simulated annealing were used to study rate distortion and
lossy source coding for stationary ergodic sources. Interest-
ingly, MCMC and annealing are widely used by RBMs/DBNs
to learn Boltzmann distribution, to which µY|X and many
other information theoretic capacity approaching probabilities
belong. Motivated by [11], [12], our previous work [18],
[19] revealed the connection between rate distortion and
RBMs/DBNs, showed that RBMs/DBNs can be trained to
learn µY|X and µY, approximate RN (D), and derived a lossy
source coding scheme for stationary ergodic sources.

D. Contributions and Outlines

In this work, we extend Hinton’s methods and our previous
work to build a lossy source compression scheme based
on RBM-based Deep AutoEncoder (DAE). Unlike traditional
linear schemes (e.g., [14], [31]), our scheme is non-linear,
suitable for any binary additive distortion measure and for
any binary distributed source (though may not be optimal).
Although autoencoders play an active role in deep learning
based image compression (see references [3], [29]), to the best

knowledge of the authors, this is the first time RBM-based
DAE is studied from the coding perspective. Another way to
evaluate our contribution is that we provide an alternative for
dimension reduction based on lossy source coding.

The paper is organized as follows. We review our previous
work, DBN Blahut-Arimoto algorithm, in Section II. A lossy
compression based on RBM-DAE scheme is presented in
Section III. Experimental results are presented in Section IV.
Section V gives conclusions and future work.

II. DBN BLAHUT-ARIMOTO ALGORITHM

In this part, we briefly review the DBN Blahut-Arimoto
(DBN-BA) algorithm proposed to learn µY|X and µY in [18],
[19], which is the corner stone of the proposed DAE compres-
sion scheme.

A. DBN interpretation of Rate Distortion

The well-studied algorithms of DBN (e.g., sampling and
learning) makes it an efficient model to learn µY|X and µY

when the source is no longer independent and identically
distributed. The key idea behind DBN-BA is to represent µY

by one DBN and µY|X by the modified DBN of µY.

Lemma 1. [5, chapter 10, p.p.330] 1

µY|X(y|x) =
1

Z ′β(x)
µY(y) exp(−βϕ(y,x)), (3)

RN (D) =
E(− log2 Z

′
β(x))

N
− βD

ln 2
, (4)

where the expectation is with respect to the probability distri-
bution on x,

Z ′β(x)
def
=

∑
y

µY(y) exp(−βϕ(x,y)),

and β is the Lagrange multiplier of the minimization of
I(x,y) + βE(ϕ(x,y)).

1[5, chapter 10, p.p.330] presents the single-letter characterization, and it
holds for the block case by regarding x and y as elements of the alphabet
{0, 1, · · · , |X |N}.

931

Theorem 1. [19] For the distortion ϕ(0, 0) = ϕ(1, 1) = 0,
ϕ(0, 1) = a, ϕ(1, 0) = b, a ≥ b > 0, assume µY can
be represented by one DBN of L layers, {(Wl,bl, cl), l =
1, 2, · · · , L}. Then, µY|X(y|x) can be represented by the
DBN {(Wl

Y|X,b
l
Y|X, c

l
Y|X), l = 1, 2, · · · , L}:

W1
Y|X = W1

Y,

c1Y|X = c1Y,

b1Y|X,i = b1Y,i − βa1xi=0 + βb1xi=1,
Wl

Y|X = Wl
Y,

clY|X = clY,

blY|X = blY.

l ≥ 2. (5)

For the distortion ϕ(0, 0) = ϕ(1, 1) = 0, ϕ(0, 1) = a
ϕ(1, 0) = b, a ≥ b > 0, when a = b = 1, it is effectively the
hamming distance; When a 6= b, it is the asymmetric distortion
measure; When a =∞, it is the deterministic WEM measure,
which is commonly used in defect storage [24], [8], [20].

B. DBN Blahut-Arimoto Algorithm

DBN is a good candidate to learn µY when the source is
binary memory case, and we present DBN Blahut-Arimoto
(DBN-BA) algorithm in Algorithm 1, where tmax denotes the
maximal number of DBN-BA iterations, n denotes the number
of sample size, and (Wl,t

Y ,b
l,t
Y , c

l,t
Y) denotes the lth layer of

DBN after t iterations for l = 1, 2, · · · , L.

Algorithm 1 DBN Blahut-Arimoto

1: procedure DBN-BA(PX(x), β, ϕ(·))
2: initialize {(Wl,0

Y ,bl,0Y , cl,0Y)} arbitrarily.
3: for t = 1, . . . , tmax do
4: sample x1,x2, · · · ,xn based on PX(x).
5: for xi ∈ {x1,x2, · · · ,xn} do
6: sample yi from
{(Wl,t−1

Y|X (xi),b
l,t−1
Y|X (xi), c

l,t−1
Y|X (xi))}.

7: end for
8: train {(Wl,t

Y ,b
l,t
Y , c

l,t
Y)} with {y1,y2, · · · ,yn}.

9: end for
10: return {(Wl,tmax

Y ,bl,tmax

Y , cl,tmax

Y)}.
11: end procedure

The above algorithm applies the well-known alternating op-
timizing algorithm [33, chapter 9]: First, we arbitrarily choose
a {(Wl,0

Y ,bl,0Y , cl,0Y)} and let it represent µ0
Y (i.e., line 2); Then

in general µtY is defined as µtY(y) =
∑

x PX(x)µtY|X(y|x),
and µtY|X(y|x) relates with µt−1Y (y) in the form of Equa-
tion (4). Line 6 obtains {(Wl,t−1

Y|X (xi),b
l,t−1
Y|X (xi), c

l,t−1
Y|X (xi)}

representing µt−1Y|X(y|x). Line 8 obtains {(Wl,t
Y ,b

l,t
Y , c

l,t
Y }

representing µtY(y). The alternating optimizing guarantees the
following converenge [33, chapter 9.3]: µtY → µY as t→∞.

The characterization of the above DBN-BA performance
was obtained in [19, Thorem 3], which claims that for a
fixed tmax there exists a sample size number n such that
Kolmogorov-Smirnov distance between the learned marginal
QtY and µY is small enough.

III. DEEP-AUTOENCODER LOSSY SOURCE CODES

In this part, we present a compression scheme based on
stacked RBMs (or DBN) Deep AutoEncoder (DAE) [11].
The proposed DAE compression scheme is one variant of the
known fixed-distortion scheme, where the distortion is fixed
and compression rate is left to optimize. The fixed distortion
is achieved by DBN Blahut-Arimoto algorithm to approximate
the N th-order rate distortion approximating posterior. The
trained DBNs are then unrolled to create a DAE, which pro-
duces an encoder and a reproducer. The unrolled DAE is fine-
tuned with back-propagation through the whole autoencoder
to minimize reconstruction errors. The two stage training is
based on the well-known deep learning principle that a better
training a deep network strategy is not to directly optimize
the objective of interest (for our case, the target distortion)
by gradient descent but to initially use a local unsupervised
criterion to pre-train each layer in turns [30].

A. Deep AutoEncoder for Compression

1) Background: We brief the deep autoencoder framework.
More details can be found in [2]. By a slight abuse of nota-
tions from RBM, we denote θ = (W,b, c) and the sigmoid
function as s(x) = 1

1+e−x for x ∈ R. An autoencoder (see
Fig. 1) consists of an encoder fθ(v) = s(Wv+b) = h, which
is to transform an input vector v to a hidden representation
h, and a decoder, gθ(h) = s(WTh + c) = v̂, which is to
map h back to a reconstructed v̂. The autoencoder is trained
to minimize the reconstruction error, which can be either the
squared error (when v = (v0, v1, · · · , vN−1) ∈ RN , and vi is
probability of being one) or the cross-entropy (when v ∈ XN).
The deep autoencoder is viewed as a stack of autoencoders,
and we use θL = {(Wl,bl, cl), i = 1, 2, · · · , L} to denote a
DAE of L layers.

2) Proposed scheme: Now we present the DAE-
compression algorithm (see Fig. 2), which consists of

1) Training stage, which consists of deep learning BA
process and fine tuning process.

a) Deep learning BA process. The purpose of this step
is to learn {(Wl

Y,b
l
Y, c

l
Y)} for µy based on DBN-

BA (i.e., Algorithm 1).
b) Unrolling. After pre-training a DBN, the DBN is

unrolled to create a deep autoencoder. The unrolled
autoencoder produces an encoder and a reproducer
for lossy compression.

c) Fine tuning process. The fine tuning stage uses
back-propagation [26] through the whole autoen-
coder to fine-tune the optimal reconstruction error
between the autoencoder input and the autoen-
coder output. More precisely, given the training
set T = {x0,x1, · · · ,xn} ∈ Xn×N to com-
press, denote TDBN = {y′0,y′1, · · · ,y′n} ∈ Xn×N
the transposed set, where y′i is sampled from
{(Wl

Y|X(xi),b
l
Y|X(xi), c

l
Y|X(xi))}, and denote

TDAE = {y0,y1, · · · ,yn} ∈ Xn×N the re-
constructed set by the DAE, and the fine-tuning
process is to minimize the reconstruction error

932

between TDBN and TDAE by adjusting θL. De-
note the fined-tuned encoder and the decoder as
{(Wl,en

Y ,bl,enY , cl,enY)} and {(Wl,re
Y ,bl,reY , cl,reY)},

respectively.
2) Compression/Reproduction stage, which consists of the

compression (Algorithm 2) and the reproduction (Algo-
rithm 3).

Algorithm 2 Deep Autoe-ncoder compression

1: procedure DAE-ENCODING(x, β, {(Wl,en
Y ,bl,enY , cl,enY)})

2: Obtain {(Wl,en
Y|X(x),bl,enY|X(x), cl,enY|X)(x)} based on

Theorem 1.
3: Sample the top hidden layer variable, m, from
{(Wl,en

Y|X(x),bl,enY|X(x), cl,enY|X(x))}.
4: return m
5: end procedure

Algorithm 3 Deep autoencoder reproduction

1: procedure DAE-REPRODUCING(m, {(Wl,re
Y ,bl,reY , cl,reY)})

2: Sample the visible layer variable, y, from
{(Wl,re

Y ,bl,reY , cl,reY)}.
3: return y.
4: end procedure

B. Analysis and notes
1) Rate and distortion: For a fixed β and N , let

(RN,β , DN,β) denote the point lying on the N th rate distortion
curve. The {(Wl

Y,b
l
Y, c

l
Y)} is trained to approximate µY,

and theoretical analysis in [18] shows that the Kolmogorov-
Smirnov distance between µY and PY represented by the
{(Wl

Y,b
l
Y, c

l
Y)} decreases with larger n and t in Algo-

rithm 1. Thus, the average distortion with {(Wl
Y,b

l
Y, c

l
Y)}

is approximately DN,β , i.e., D̄ ∼ DN,β . The fine-tuning
process (i.e., step (1.c)) causes {(Wl,re

Y ,bl,reY , cl,reY)} and
{(Wl,re

Y ,bl,reY , cl,reY)} shift from {(Wl
Y,b

l
Y, c

l
Y)}, which

further leads to the difference between D̄ and DN,β (see
Fig. 4).

For a DAE-encoder {(Wl,en
Y ,bl,enY , cl,enY)}, the compressed

information is represented by the top layer (i.e., the bottleneck
layer) hidden variable, hL, therefore, the rate of the proposed
scheme is R = KL

N . The compressed size can be further
reduced by lossless compress hL, however, we leave that for
future work.

2) Fixed-distortion and fixed-rate schemes: Note that for
a fixed β and N , the above DAE-compression first fixes the
average distortion D̄ to DN,β by iteratively approaching µy

(i.e, step (1.a)), and then minimizes the reconstruction error
via back-propagation (i.e., step (1.c)). By fixing β and varying
the bottleneck layer (i.e., KL), the above DAE compression
scheme is essentially the known fixed-distortion scheme. Par-
ticularly, when β = 0, the proposed DAE scheme degenerates
to the one proposed by Hinton et al [11], which is a lossless
compression by optimizing KL.

Similarly by fixing KL and varying β the above DAE
compression scheme is another instance of the fixed-rate
scheme ([32]).

IV. EXPERIMENTS

In this section, we present our experimental results to
validate the proposed DAE compression scheme. A simple and
widely used compression method is the principal components
analysis (PCA)[28], which finds the directions of greatest
variance in the data set and represents each data point by its
coordinates along each of these directions. Therefore, we also
compare our results with those of PCA.

A. Dataset

We use the MNIST digit dataset [16], which is a standard
dataset for deep learning community. The MNIST digit dataset
contains 60,000 training images and 10,000 test images of
ten handwritten digits (0 to 9) with 28 × 28 pixels. The
data set is binarized: each pixel value was statistically set to
1 in proportion to its pixel intensity. Therefore, each image
of MNIST is 784 bits. The binarized MNIST is suitable to
test our DAE compression, because each digit is neither i.i.d.
distributed nor stationary distributed. The distortion metric
is the Hamming distance, i.e., ϕ(0, 0) = ϕ(1, 1) = 0,
ϕ(0, 1) = ϕ(1, 0) = 1.

B. Training details

We built our DAE compression scheme on top of the
TensorFlow framework and used an NVIDIA GeForce GTX
960 GPU for accelerated training. We implemented the fixed-
distortion scheme by fixing β and varying KL. For each fixed
β, we first started with a large KL, then gradually decreased
KL till the reconstructed digits are hard to recognize (see
Fig. 3 for one example). In all our experiments, we use DAE
of four layers, of which the number of first four layers neurons
are fixed as 784, 1000, 900, 800, respectively, and KL varies
for different β’s. The training of DBN was conducted using
greedy training algorithm proposed by Hinton et al. [10],
and the training of the DAE was conducted by the Adam’s
optimizer. The DBN-BA maximal iteration was set to 12,
DBN-BA sample size was 60,000, the mini-batch size was
30, number of epochs was 50, and the learning rate was 0.01.

C. Results

The lossy compression results of MNIST images with DAE
are presented in Table. I, and the rate-distortion curve is
drawn in Fig. 4. For reference, the compressed size by lossless
compression scheme presented in [11] is 30 bits with 784-
1000-500-250-30 autoencoder. In Fig. 4, we also present the
average distortion after the DBN-BA algorithm. Compared
with the eventual DAE compression scheme, there is a dis-
tortion loss, and this is due to the fine-tuning process where
{(Wl,en

Y ,bl,enY , cl,enY)} deviates from {(Wl
Y,b

l
Y, c

l
Y)}.

The lossy compression results of MNIST image with PCA
are presented in Table. II, where the number of principle
components are the same for the DAE counterpart, and the
rate-distortion curve in drawn in Fig. 4. We can see that for
high compress rates, DAE achieves lower distortion loss as
compared to the PCA while under-performs the PCA with
lower compress rates.

933

Fine−tune

w1

w2

w3

1

2

w3

w2

w

reproducer

w1 +e1

w2 + e 2

w3 + e 3

w3 + e4

w2 + e5

w1 + e6
1w

w

w3

encoder

UnrollPretrain
Fig. 2: Block diagram of the proposed compression training scheme. Left: Pre-training consists of running deep learning-BA
on a stack of RBMs; Middle: After pre-training, the RBMs are unrolled to create a deep autoencoder, which is served as
encoder and reproducer for lossy source coding; Right: The unrolled autoencoder is then fine-tuned using back-propagation.

Fig. 3: An example of a unrecognizable image due to excessive
compression.

V. CONCLUSION AND FUTURE WORK

This paper presents the applications of Restricted Boltz-
mann Machines (RBMs) based deep autoencoder to lossy
compression of binary sources. The key steps are: 1) learn
the optimal posterior through the Blahut-Arimoto algorithm
with stacked RBMs (or Deep Belief Network), which is to
then initialize the weight parameters for the deep auto-encoder
(DAE); 2) the stacked RBMs are unrolled to create a deep
auto-encoder; and 3) the DAE parameters are further fine-
tuned for optimal reconstruction.

Lossy compression is the foundation of other information
theory/computer science problems, such as Write-efficient
Memories [1], [17], information embedding [4], [21], stenog-
raphy [6], and clustering [25]. Therefore, promising directions
for future work are to extend the techniques presented here to
the problems listed above.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 8 10 12 14 16 18 20 22 24

h
a
m

m
in

g
 l
o
s
s

compressed bit

Rate Distortion with DAE
Rate Distortion with PCA

Original hamming loss with DBN-BA

Fig. 4: Rate Distortion curves of the DAE/PCA scheme on
MNIST images.

REFERENCES

[1] R. Ahlswede and Z. Zhang, “Coding for write-efficient memory,”
Information and Computation, vol. 83, no. 1, pp. 80–97, October 1989.

[2] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,”
in Proceedings of ICML workshop on unsupervised and transfer learn-
ing, 2012, pp. 37–49.

[3] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image
compression,” arXiv preprint arXiv:1611.01704, 2016.

[4] R. J. Barron, B. Chen, and G. W. Wornell, “The duality between
information embedding and source coding with side information and
some applications,” IEEE Transactions on Information Theory, vol. 49,
no. 5, pp. 1159–1180, 2003.

[5] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[6] T. Filler and J. Fridrich, “Gibbs construction in steganography,” IEEE
Transactions on Information Forensics and Security, vol. 5, no. 4, pp.
705–720, 2010.

[7] A. Fischer and C. Igel, “An introduction to restricted boltzmann ma-
chines,” Progress in Pattern Recognition, Image Analysis, Computer
Vision, and Applications, vol. 7441, 2012.

934

TABLE I: Lossy source compression on MNIST images with DAE. The β’s from top to bottom and from left to right are 0,
0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, respectively, and the KL’s are 24, 22, 20, 18, 16, 15, 12, 10, 9, respectively.

[8] F. Fu and R. W. Yeung, “On the capacity and error-correcting codes of
write-efficient memories,” IEEE Transcations on Information Theory,
vol. 46, no. 7, pp. 2299–2314, November 2000.

[9] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE international conference
on acoustics, speech and signal processing. IEEE, 2013, pp. 6645–
6649.

[10] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[11] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, vol. 313, no. 5786, pp. 504–507,
2006.

[12] S. Jalali, A. Montanari, and T. Weissman, “Lossy compression of
discrete sources via the viterbi algorithm,” IEEE Transactions on In-
formation Theory, vol. 58, no. 4, pp. 2475–2489, 2012.

[13] S. Jalali and T. Weissman, “Block and sliding-block lossy compression
via mcmc,” IEEE Transactions on Communications, vol. 60, no. 8, pp.
2187–2198, 2012.

[14] S. B. Korada and R. Urbanke, “Polar codes are optimal for lossy source
coding,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1751–1768, April
2010.

[15] N. Le Roux and Y. Bengio, “Representational power of restricted
boltzmann machines and deep belief networks,” Neural computation,
vol. 20, no. 6, pp. 1631–1649, 2008.

[16] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[17] Q. Li, “Linear code duality between write-efficient memories and lossy
source coding,” IEEE Communications Letters, vol. 22, no. 11, pp.
2206–2209, 2018.

[18] Q. Li and Y. Chen, “Rate distortion via restricted boltzmann machines,”
in Proc. 56th Annual Allerton Conference on Communication, Control,
and Computing (Allerton 2018), Monticello, IL, October 2018, pp. 505–
512.

[19] ——, “Loss source coding via deep learning,” in Data Compression
Conference (DCC), 2019, 2019.

[20] Q. Li and A. Jiang, “Polar codes are optimal for Write-efficient Mem-
ories,” in Proc. 51st Annual Allerton Conference on Communication,
Control and Computing (Allerton 2013), Monticello, IL, October 2013,
pp. 660–667.

[21] P. Moulin and J. A. O’Sullivan, “Information-theoretic analysis of
information hiding,” IEEE Transactions on information theory, vol. 49,
no. 3, pp. 563–593, 2003.

[22] T. Murayama, “Thouless-anderson-palmer approach for lossy compres-
sion,” Physical Review E, vol. 69, no. 3, p. 035105, 2004.

[23] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein,
and Y. Beery, “Deep learning methods for improved decoding of linear
codes,” IEEE Journal of Selected Topics in Signal Processing, vol. 12,
no. 1, pp. 119–131, 2018.

[24] R. L. Rivest and A. Shamir, “How to reuse a write-once memory,”
Informaton and Control, vol. 55, pp. 1–19, 1982.

[25] K. Rose, “Deterministic annealing for clustering, compression, classifi-
cation, regression, and related optimization problems,” Proceedings of
the IEEE, vol. 86, no. 11, pp. 2210–2239, 1998.

[26] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning
representations by back-propagating errors,” Cognitive modeling, vol. 5,
no. 3, p. 1, 1988.

[27] C. E. Shannon, “Coding theorems for a discrete source with a fidelity
criterion,” IRE Nat. Conv. Rec, vol. 4, no. 142-163, p. 1, 1959.

[28] L. I. Smith, “A tutorial on principal components analysis,” Tech. Rep.,
2002.

[29] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image compres-
sion with compressive autoencoders,” arXiv preprint arXiv:1703.00395,
2017.

[30] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” Journal of Machine
Learning Research, vol. 11, no. Dec, pp. 3371–3408, 2010.

[31] M. J. Wainwright, E. Maneva, and E. Martinian, “Lossy Source Com-
935

TABLE II: Lossy source compression on MNIST images with PCA. The compressed size from top to bottom and from left
to right are 24, 22, 20, 18, 16, 15, 12, 10, 9, respectively.

pression Using Low-Density Generator Matrix Codes: Analysis and
Algorithms,” IEEE Transacations on Information Theory, vol. 56, no. 3,
pp. 1351–1367, March 2010.

[32] E.-h. Yang, Z. Zhang, and T. Berger, “Fixed-slope universal lossy data
compression,” IEEE Transactions on Information theory, vol. 43, no. 5,
pp. 1465–1476, 1997.

[33] R. W. Yeung, Information theory and network coding. Springer Science
& Business Media, 2008.

936

